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ABSTRACT 

 
Neglected tropical diseases (NTDs) impose a substantial burden in low- and middle-income countries while 

attracting limited investment and innovation. Digital transformation has enabled in silico approaches that 

accelerate discovery by integrating structural biology, cheminformatics, and machine learning. This chapter 

analyzes how computational pipelines support target identification, virtual screening, molecular dynamics, 

pharmacophore and QSAR modeling, as well as ADMET prediction, with case studies in Chagas disease, 

leishmaniasis, schistosomiasis, and arboviruses. We discuss the role of open databases and collaborative 

platforms, including TDR Targets, ChEMBL, DrugBank, and open-source initiatives, and outline future 

directions where AI and multi-omics integration can reduce time, cost, and risk in public-health-oriented drug 

discovery. 
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1. Neglected Diseases as a Public Health Priority 

 NTDs such as Chagas disease, leishmaniasis, schistosomiasis, onchocerciasis, and arboviruses 

collectively affect more than one billion people and contribute millions of DALYs worldwide1,3. Their 

prevalence is concentrated in settings with limited sanitation, vector control, and access to healthcare, which 

amplifies cycles of poverty and social stigma1. Despite this burden, most therapeutic options remain decades 

old and are often toxic or operationally complex; benznidazole retains limited efficacy in chronic Chagas 

cardiomyopathy, and amphotericin B for leishmaniasis demands inpatient care with nephrotoxicity risk4,5. 

 The resulting innovation gap reflects a structural paradox: diseases of high public-health importance 

but low commercial return receive less R&D investment6. WHO roadmaps emphasize elimination targets and 

the linkage between NTD control and Sustainable Development Goals, yet implementation lags in many 

endemic regions3. In this context, in silico methods can lower barriers by reducing wet-lab costs, prioritizing 

hypotheses, and fostering cross-border collaboration through digital platforms2,18. Computational pipelines 

thereby become instruments not only of scientific efficiency but also of health equity. 

 

2. Principles and Tools of In Silico Drug Discovery 

2.1 Target identification and validation 

 Rational discovery begins with targets that are essential for pathogen survival and ideally absent or 

divergent in humans. Comparative genomics and proteomics help nominate enzymes in parasite-specific 

pathways, while structural analyses assess druggability by locating well-defined pockets7. In trypanosomatids, 

trypanothione reductase and cruzain exemplify validated targets with extensive structural and biochemical 

characterization13,14. Public repositories and pathogen-focused portals, such as TDR Targets, streamline this 

step by integrating omics, essentiality, and annotation metadata17. 

2.2 Virtual screening and molecular docking 



 

 Virtual screening narrows chemical space by ranking large libraries against predicted binding sites. 

Docking engines estimate binding poses and interaction energies, enabling triage before biochemical testing2,8. 

For Trypanosoma cruzi, docking informed the repurposing of azole antifungals against sterol 14α-demethylase 

and guided design of cruzain inhibitors with improved complementarity to the catalytic cleft13. Although 

docking is computationally efficient, its accuracy depends on input structures, protonation states, and 

treatment of receptor flexibility2,8. 

2.3 Molecular dynamics simulations 

 Molecular dynamics (MD) complements docking by modeling atomistic trajectories under explicit 

solvent, capturing induced fit, water networks, and conformational selection9. In leishmaniasis, MD helped 

discriminate stable complexes of trypanothione reductase inhibitors and rationalize structure–activity 

relationships14. Free-energy methods such as MM/GBSA and alchemical calculations refine affinity estimates, 

improving enrichment after docking9. 

2.4 Pharmacophore modeling and QSAR 

Pharmacophore models encode spatial arrangements of essential features observed in active ligands, enabling 

scaffold hopping and focused library design10. QSAR maps molecular descriptors to bioactivity, yielding 

predictive models that prioritize analogs for synthesis and testing. For natural-product scaffolds with 

antileishmanial potential, pharmacophore-guided optimization has accelerated the selection of drug-like 

chemotypes14. 

2.5 ADMET and safety profiling 

 Computational prediction of absorption, distribution, metabolism, excretion, and toxicity eliminates 

liabilities early, conserving resources11. In NTD pipelines where formulation and field deployment are 

challenging, in silico flags for solubility, permeability, hERG risk, CYP interactions, and hepatotoxicity help 

align candidates with public-health realities such as oral dosing and minimal monitoring11. 

2.6 Machine learning and AI integration 



 

 Deep learning enhances scoring, pose prediction, and de novo design by learning non-linear structure–

activity patterns from large chemogenomic datasets12. During outbreaks, AI-assisted repurposing can rapidly 

sift through approved drugs and clinical-stage compounds to identify candidates against viral enzymes16,20. 

When coupled with multi-omics, AI also reveals host–pathogen network vulnerabilities that support 

multitarget or host-directed strategies19. 

 

3. Applications and Case Studies in Neglected Diseases 

3.1 Chagas disease 

 For T. cruzi, cruzain and sterol biosynthesis enzymes dominate the target landscape. Structure-based 

campaigns integrated docking, MD, and medicinal chemistry to deliver submicromolar cruzain inhibitors with 

balanced physicochemical profiles13. Docking also supported azole repurposing against CYP51, informing 

translational efforts; however, mixed clinical outcomes underscore the need for combination regimens and 

precise patient stratification4,13. Proteomic analyses continue to reveal metabolic chokepoints that can be 

exploited for polypharmacology7. 

3.2 Leishmaniasis 

 Computational screening against trypanothione reductase and dihydrofolate reductase identified 

chemotypes later validated in biochemical and cellular assays14. Pharmacophore modeling facilitated 

optimization of natural products, while MD rationalized differences in potency via pocket hydration and loop 

dynamics14. Because clinical management varies by Leishmania species and clinical form, prioritizing broad-

spectrum targets with conserved pockets is a strategic aim14. 

3.3 Schistosomiasis 

 With praziquantel as the lone frontline therapy, resistance concerns motivate discovery of new 

mechanisms. Target-centric docking against thioredoxin–glutathione reductase and proteases has nominated 

repurposed drugs and novel series with in vitro activity15. Computational analog design around the 



 

praziquantel scaffold seeks to modulate stereochemistry and physicochemical parameters to improve spectrum 

and reduce dose requirements15. 

3.4 Arboviruses (dengue and related flaviviruses) 

 NS3 protease and NS5 polymerase are archetypal antiviral targets. Structure-guided docking and MD 

prioritized nucleoside and non-nucleoside scaffolds, while AI-assisted repurposing rapidly surfaced pan-

flavivirus candidates during recent epidemics16,20. Cross-reactivity modeling helps predict broad-spectrum 

potential, an asset for regional programs facing cocirculation of multiple arboviruses16. 

 

4. Digital Platforms, Collaboration, and Artificial Intelligence 

 Open databases democratize access to high-quality chemical and biological data. ChEMBL and 

PubChem provide bioactivity and structure repositories; DrugBank curates drug–target relationships and 

pharmacology; TDR Targets integrates parasite genomics with pathogen-specific annotations17. These 

resources allow groups in endemic regions to launch in silico projects without prohibitive licensing costs17. 

 Collaborative initiatives such as Open Source Drug Discovery and DNDi operationalize distributed 

discovery, blending computational prioritization with experimental validation across partner labs18. Such 

models are well-suited to NTDs, where public-private partnerships and not-for-profit portfolios dominate. 

 Artificial intelligence enhances each stage of the pipeline. Deep generative models propose 

synthetically accessible molecules that satisfy potency and ADMET constraints12. Active-learning loops 

couple predictive models with iterative testing, improving hit rates while reducing assays. Integration with 

multi-omics clarifies host–pathogen dependencies, revealing opportunities for host-directed or multitarget 

therapies19. During emergencies, cloud-based platforms enable rapid virtual screening and consensus 

modeling for repurposing campaigns16,20. 

 Ethical and policy considerations remain central. Open science commitments should include capacity 

building in computational chemistry and data stewardship to ensure equitable participation by institutions in 



 

endemic countries. Data governance must protect patient privacy when clinical datasets inform AI models, 

while preserving FAIR principles to maximize reuse. 

 

5. Future Directions and Integration into Health Systems 

 Hybrid discovery models will combine in silico prioritization with high-content phenotypic screening 

and orthogonal biophysics, shortening cycle times and attrition2,8,9. Standardized reporting of docking 

protocols, MD settings, and validation metrics will improve reproducibility and regulatory confidence. As 

agencies progressively accept modeling and simulation data, computational evidence will carry greater weight 

in preclinical packages, particularly for repurposing and mechanism-of-action support. 

 Sustainability considerations favor computational pipelines: fewer reagents, reduced waste, smaller 

animal usage, and lower costs align with environmental and ethical goals11. Embedding digital discovery 

capabilities within national reference laboratories and university networks can create regional innovation hubs 

that respond quickly to outbreaks and endemic-disease priorities. 

 Ultimately, translation requires linkage to surveillance, diagnostics, and access programs. In silico 

efforts should be coupled to target product profiles that reflect field constraints, including oral dosing, heat-

stable formulations, and short treatment courses. By aligning computational innovation with public-health 

logistics, countries can advance toward equitable control and elimination targets for NTDs3. 
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